
R300 – Advanced Econometric Methods

PROBLEM SET 2 - SOLUTIONS

Due by Mon. October 19

1. Suppose that

xi ∼ N(θ, σ2
i )

for known σ2
i . (Note that, conditional on σ2

1, . . . , σ
2
n the data are not identically distributed.

However, we can set this into a random sampling framework if xi, σ
2
i are i.i.d. draws from

some joint distribution.)

(i) Show that the sample mean

x̂ = n−1

n∑
i=1

xi

is unbiased for θ. Derive its sampling variance.

(ii) Show that the estimator

x̌ =
n∑
i=1

wixi, wi =
1/σ2

i∑n
i′=1 1/σ2

i′

is unbiased. Derive its sampling variance.

(iii) Show that

varθ(x̌) ≤ varθ(x̂).

(i) Unbiasedness is immediate by the sample-mean theorem. The variance is

varθ(x̂) =
1

n2

n∑
i=1

varθ(xi) =
1
n

∑n
i=1 σ

2
i

n
.

(ii) Unbiasedness follows from the fact that the weights sum up to one. The variance is

varθ(x̌) =
n∑
i=1

varθ(wixi) =
n∑
i=1

w2
i σ

2
i =

1∑n
i=1 1/σ2

i

.
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(iii) We need to show that
1
n

∑n
i=1 σ

2
i

n
≥ 1∑n

i=1 1/σ2
i

.

Re-arranging yields the equivalent condition that

1 = 12 ≤

(
1

n

n∑
i=1

σ2
i

) (
1

n

n∑
i=1

1

σ2
i

)
.

Also note that

12 =

(
1

n

n∑
i=1

σi
1

σi

)2

,

and so the result follows by Cauchy-Shwarz. This exercise is a simple application of Gauss-

Markov. Indeed, in the same way it is easy to show that the variance of any linear estimator

of the form ∑
i

ηi xi

for weights that satisfy
∑

i ηi = 1 (otherwise the estimator is not unbiased) is at least as

large as the variance of x̌. Hence, x̌ is the best linear unbiased estimator of θ.

2. Consider the finite population of the three numbers 1,2, and 3.

(i) Write down all possible random samples of size two from this population.

(ii) Compute the sample mean in each of these samples.

(iii) Compute the population mean and the mean of the sample mean. What do you

conclude?

(iv) Compute the variance of the sample mean. Compare it to the population variance.

What do you conclude?

(i) The are 32 possible such samples. They are

{1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}.

(ii) The sample means are

1,
3

2
, 2,

3

2
, 2,

5

2
, 2,

5

2
, 3.
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(iii) The population mean is
1 + 2 + 3

3
=

6

3
= 2.

The mean of all the sample means is

1 + 3
2

+ 2 + 3
2

+ 2 + 5
2

+ 2 + 5
2

+ 3

32
=

1 + 3 + 2 + 2 + 5 + 2 + 3

9
=

18

9
= 2.

The equality is just a manifestation of the unbiasedness of the sample mean, i.e., the

expectation of the sample average equals the the population mean.

(iv) The population variance is

(1− 2)2 + (2− 2)2 + (3− 2)2

3
=

2

3
.

The squared deviations of the sample means from the population mean are

1,
1

4
, 0,

1

4
, 0,

1

4
, 0,

1

4
, 1.

The mean of these values is
3

9
=

1

3
.

Note that
2/3

2
=

1

3
.

This is a manifestation of the sample-mean theorem.

3. The Pareto distribution on the open interval [m,∞) is the one-parameter distribution

with density
θmθ

x1+θ

for θ > 0 (so the minimum value m ≥ 0 is known here). This distribution is popular for

modelling income.

(i) Derive the score and Fisher information for θ.

(ii) Show that

y = log(x/m)

follows an exponential distribution with rate parameter θ .
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(iii) If y1, . . . , yn are random draws from an exponential with rate parameter θ then u =∑n
i=1 yi follows a Gamma distribution with shape and scale parameters n, 1/θ. Because n

here is an integer the distribution is also called the Erlang distribution. Its density at u is

θnun−1e−θu

(n− 1)!
.

Verify this for n = 2.

(iv) If u is Gamma distributed as above then

v = n/u = n/
∑
i

yi

is distributed as Inverse Gamma with shape and scale parameters n, nθ. Verify this. The

Inverse Gamma with shape and scale n, β has density

1

(n− 1)!
βn

1

vn+1
e−β/v

(i) The log density is

log θ + θ logm− (1 + θ) log x

and so the score equals
1

θ
+ logm− log x =

1

θ
− log

x

m
.

The Hessian is

− 1

θ2
< 0

and so the information is simply
1

θ2
.

(ii) Let

y = log(x/m).

Then the inverse transform is

x = mey

and
∂x

∂y
= mey.

The density of y is therefore

θmθ

(mey)1+θ
mey =

θ

eθy
= θe−θy.

[4]



This is indeed an exponential with scale θ (and, hence, mean 1/θ).

(iii) If y1 and y2 are independent exponential their joint density function is

θ2e−θ(y1+y2).

Let u = y1 + y2 and v = y2. The marginal density of u then is∫ u
0
θ2e−θu dv = θ2e−θu

∫ u
0
dv = θ2ue−θu;

verify that this function is non-negative on [0,+∞] and that it integrates to one. This is

an Erlang distribution with parameters 2 and θ.

(iv) If u is Erlang then we want the density of

v =
n

u
.

The inverse transformation is u = n/v and has derivative

− n
v2
.

The density of v is thus

1

(n− 1)!
θn
(n
v

)n−1

e−θn/v
n

v2
=

1

(n− 1)!
βn

1

vn+1
e−β/v

for β = nθ.

4. Use the results from the previous question to answer the following questions.

(i) The maximum likelihood estimator of θ in the Pareto distribution, based on a random

sample of n observations x1, . . . , xn, equals

θ̂ =
n∑n

i=1 log(xi/m)
.

Is this estimator unbiased?

(ii) Can you derive a first-order approximation (in n) of the bias and variance of θ̂? Does

the variance of θ̂ approach the efficiency bound?

(iii) Can you come up with an unbiased estimator? Explain.
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(i) Note that

θ̂ =
n∑n

i=1 log(xi/m)
=

(∑n
i=1 yi
n

)−1

, yi = log(xi/m).

From the previous question we know that the yi are random draws from an exponential

distribution with rate θ. Furthermore, we know that θ̂ has an Inverse Gamma distribution

with parameters n and nθ. Hence,

Eθ(θ̂) =
nθ

n− 1
> θ

and so the MLE is not unbiased.

(ii) We have

Eθ(θ̂) = θ +
θ

n− 1
= θ +O(n−1).

So the bias vanishes like n−1. For any n > 2 we also have

varθ(θ̂) =
n2θ2

(n− 1)2(n− 2)
=
θ2

n
+ o(n−1).

(iii) An unbiased (bias-corrected) estimator is

n− 1

n
θ̂.

Its variance is(
n− 1

n

)2

varθ(θ̂) =

(
n− 1

n

)2
n2θ2

(n− 1)2(n− 2)
=

θ2

n− 2
=
θ2

n
+ o(n−1)

and is smaller than that of the MLE yet larger than the parametric efficiency bound.
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